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Abstract

An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conser-
vation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is fur-
ther subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data
reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals
on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation
for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss
quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implemen-
tation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate
the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a
separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and
high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well
known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The spectral volume (SV) method is a recently developed finite volume method for hyperbolic conser-
vation laws on unstructured grids [30–34,20,25]. The SV method belongs to a general class of Godunov-
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type finite volume method [12,28], which has been under development for several decades, and is consid-
ered to be the current state-of-the-art for the numerical solution of hyperbolic conservation laws. For a
more detailed review of the literature on the Godunov-type method, refer to [30,29], and the references
therein. Many of the most popular numerical methods, such as the k-exact finite volume [3,11], the essen-
tially non-oscillatory (ENO) [14,1], and weighted ENO [18,37] methods are also Godunov-type methods.
The SV method is also closely related to the discontinuous Galerkin (DG) [7–10,2,4,37] method, a popular
finite-element method for conservation laws, and the spectral difference [24] method. Both the SV and DG
methods employ multiple degrees of freedom within a single element. Each simplex in the SV method uti-
lizes a ‘‘structured’’ set of sub-cells, thus resulting in more cell faces where Riemann problems must be
solved. The number of interior faces in 3D may be high, making the 3D SV method expensive. However,
this inherent property of sub-cell resolution may give the SV method the ability to capture discontinuities
with higher resolution than the DG method. For more comparisons of the SV and DG methods, refer to
[30,39].

The aforementioned additional cell faces present in the SV method number in the dozens per SV for 2D
and in the hundreds per SV for 3D. In the traditional implementation of the SV method, all face integrals
are computed by means of Gauss quadrature formulas, which are appropriate to the shape and dimension
of the face. For example, a pentagonal face existing in the partition of a tetrahedral SV (3D) is split into 3
triangles. To carry out the integration, a Gauss quadrature formula of appropriate precision is then
employed for each triangle. This procedure can be efficient in 2D, where the required Gauss quadrature
points number in the dozens per SV. However in 3D, the partition of a tetrahedron can be so complicated
that hundreds or thousands of Gauss quadrature points per SV may be necessary to compute the face inte-
grals to the desired precision.

In this paper, we present two different approaches to handle the face integrals more efficiently. In
each approach, a nodal set is defined within each SV to support a polynomial reconstruction for the
flux vector. The shape functions defined by this nodal set are then integrated analytically over a stan-
dard element, resulting in an analytical representation for the flux integral on all faces. This reconstruc-
tion is universal for all SVs if a nodal set is distributed in a geometrically similar manner for all SVs.
The first approach employs the above methodology for the internal faces only, while using the Gauss
quadrature formulas for faces bounding an SV. This approach will be referred to as the partial quad-
rature (PQ) approach. The second approach employs the above methodology for all faces, and is thus
referred to as the quadrature-free (QF) approach. Both approaches are shown to be stable and
convergent.

It is well known that high-order methods are very sensitive to the treatment of curved wall boundaries.
It has been shown recently [34] that in the high-order SV method, unless care is taken to represent curved
boundaries with high-fidelity, the solution accuracy may be reduced to low-order. The customary
approach is to introduce higher order elements for cells on curved wall boundaries. This approach has
been shown to produce desired results [34], but this necessitates storage of a separate reconstruction
for each cell bounding a curved wall. For large problems, and especially in 3D, the memory requirement
for this approach may be large. Recently, Krivodonova and Berger [19] and Luo et al. [21] have presented
a simplified treatment for curved boundaries which utilizes a high-order approximation of the normal vec-
tor to the physical rather than computational geometry. This eliminates the need to store a separate recon-
struction for wall boundary cells. We implement a similar technique in this paper, for both the PQ and
QF framework.

The paper is organized as follows. In Section 2, we review the basic formulation of the SV method. After
that, the PQ and QF approaches are described in detail in Section 3. In Section 4, multi-dimensional total var-
iation diminishing (TVD) limiters are discussed in detail. Section 5 outlines the methodology for a simplified
curved boundary representation. Numerical results including accuracy studies for linear and non-linear advec-
tion, as well as the Euler equations are presented in Section 6. In addition, computations of inviscid flows over
a circular cylinder, and a NACA 0012 airfoil are carried out to demonstrate the effectiveness of the curved
boundary representation. Finally, conclusions and some possibilities for future work are summarized in
Section 6.1.
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2. Review of the basic spectral volume method

Consider the multi-dimensional conservation law
Fig. 1.
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on domain X · [0,T] and X � R3 with the initial condition
Qðx; y; z; 0Þ ¼ Q0ðx; y; zÞ; ð2:1bÞ

and appropriate boundary conditions on oX. In (2.1), x, y, and z are the Cartesian coordinates and
(x,y,z) 2 X, t 2 [0,T] denotes time, Q is the vector of conserved variables, and f, g and h are the fluxes in
the x, y and z directions, respectively. Domain X is discretized into I non-overlapping triangular (2D), or tet-
rahedral (3D) cells. In the SV method, the simplex grid cells are called SVs, denoted Si, which are further par-
titioned into CVs, denoted Ci,j, which depend on the degree of the polynomial reconstruction. Examples of
partitions supporting linear, quadratic and cubic reconstructions are shown in Fig. 1 (2D), and quadratic
and cubic reconstructions are shown in Fig. 2 (3D). The partitions shown in Fig. 2 were taken from Chen
[6]. Volume-averaged conserved variables on the CVs are then used to reconstruct a high-order polynomial
inside the SV. To represent the solution as a polynomial of degree m, we need N pieces of independent infor-
mation, or degrees of freedom (DOFs). Where N is calculated as follows:
Partitions of a triangular SV supporting linear, quadratic and cubic data reconstructions, shown in (a), (b) and (c), respectively.

ig. 2. Partitions of a tetrahedral SV supporting quadratic and cubic data reconstructions, shown in (a) and (b), respectively.
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N ¼ ðmþ 1Þðmþ 2Þ � � � ðmþ dÞ
d!

; ð2:2Þ
where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-averaged con-
served variables at the N CVs. Define the CV-averaged conserved variable for Ci,j as
Qi;j ¼
1

V i;j

Z
Ci;j

QdV ; j ¼ 1; . . . ;N ; i ¼ 1; . . . ; I ; ð2:3Þ
where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, a polynomial
pi(x,y,z) 2 Pm (the space of polynomials of at most degree m) can be reconstructed such that it is a
(m + 1)th order-accurate approximation to Q(x,y,z) inside Si.
piðx; y; zÞ ¼ Qðx; y; zÞ þ Oðhmþ1Þ; ðx; y; zÞ 2 Si; i ¼ 1; . . . ; I ; ð2:4Þ

where h is the maximum edge length of all the CVs. This reconstruction can be solved analytically by satisfying
the following conditions:
1

V i;j

Z
Ci;j

piðx; y; zÞdV ¼ Qi;j; j ¼ 1; . . . ;N : ð2:5Þ
This polynomial pi(x,y,z) is the (m + 1)th order approximation we are looking for as long as the solution
Q(x,y,z) is smooth in the region covered by Si. The reconstruction can be expressed more conveniently as
piðx; y; zÞ ¼
XN

j¼1

Ljðx; y; zÞQi;j; ð2:6Þ
where Lj(x,y,z) 2 Pm are the shape functions which satisfy
1

V i;j

Z
Ci;j

Lnðx; y; zÞdV ¼ djn: ð2:7Þ
Integrating (2.1a) in Ci,j, we obtain
dQi;j

dt
þ 1

V i;j

XK

r¼1

Z
Ar

ð~F �~nÞdA ¼ 0; j ¼ 1; . . . ;N ; i ¼ 1; . . . ; I ; ð2:8Þ
where ~F ¼ ðf ; g; hÞ, Ar represents the rth face of Ci,j, ~n is the outward unit normal vector of Ar, and K is the
number of faces in Ci,j. More details of this, including representative plots of the shape functions can be found
in [31]. If ~F is a non-linear function of the conserved variables, then the surface integration on each face is
performed with a (m + 1)th order-accurate Gauss quadrature formula; i.e.,
Z
Ar

ð~F �~nÞdA ffi
XJ

q¼1

wrq
~F ðQðxrq; yrq; zrqÞÞ �~nrAr; ð2:9Þ
where J = integer[(m + 2)/2] is the number of quadrature points on the rth face in 2D, wrq are the Gauss quad-
rature weights, and (xrq,yrq,zrq) are the Gauss quadrature points. Since the reconstructed solution is discon-
tinuous across SV interfaces, the interface flux is not uniquely defined. Therefore the normal flux in (2.9) is
replaced by a ‘‘numerical’’ Riemann flux, such as the Rusanov [23], Roe [22] or HLLC [15,26,27,5] flux.
For example, the Rusanov flux can be written as
bF ðQL;QR;~nÞ �
1

2
½~F ðQLÞ �~nþ~F ðQRÞ �~n� aðQR � QLÞ� ffi ~F ðQÞ �~n � F n; ð2:10Þ
where QL and QR are the reconstructed solution at the left (inside Ci,j) and right side (outside Ci,j) of Ar, a is
the maximum absolute eigenvalue of the flux Jacobian in~n direction, evaluated at an average state of QL and
QR. In [30], it was shown that the above SV scheme is (m + 1)th order-accurate.
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For time integration, we use either the 2nd or 3rd order Strong Stability-Preserving (SSP) Runge–Kutta
scheme [13].

3. Formulation of the quadrature-free approach

In the new approach, a nodal set, such as those shown in Fig. 3, is selected from Hesthaven [16,17]. This
nodal set is then used to reconstruct a high-order polynomial approximation for the flux vector, and then the
flux integrals are computed analytically, without the need for Gauss quadrature formulas. If we assume Q, f, g

and h to be all polynomials in (2.1a), obviously f, g and h should be one degree higher than Q. Therefore, a
polynomial of degree m + 1 is employed to reconstruct the flux vector.

The flux vector ~F can be computed at any point (x,y,z) by the following
Fig. 3.
(c), res
~F ðx; y; zÞ ¼
XNS

i¼1

Miðx; y; zÞ~F i; ð3:1Þ
where NS is the number of nodes in the nodal set, calculated from (2.2), and ~F i is the flux vector at node i
computed using the conserved variables at node i given by (2.6). Again, Q(x,y,z) and ~F ðx; y; zÞ are taken to
be continuous polynomials within each SV, thus (2.6) and (3.1) are valid within a given SV and not across
SV boundaries, so interpolations are only carried out locally within a given SV.

Mi(x,y,z) are the shape functions defined by the nodal set which satisfy
Mnðxj; yj; zjÞ ¼ djn: ð3:2Þ
Some representative 2D examples of the shape functions are shown in Figs. 4 and 5.
In the PQ approach, (3.1) is integrated over each internal face, resulting in an analytical representation for

the flux integral on all internal faces. This is done using a program capable of symbolic calculus, such as Math-
ematica [35]. This allows for the flux integral on each internal face to be computed as a weighted average of the
flux evaluated at the nodal set, i.e.;
Z

Ar

~F �~ndS ¼ Ar

XNS

i¼1

Mi
~F i �~nr; ð3:3Þ
where Mi are the face-averaged shape functions for face r. In practice, face-averaged shape functions are com-
puted during preprocessing for a standard element and then multiplied by the physical face area for compu-
tation. This eliminates the need to store all of the Jacobians. The face integrals on SV-bounding faces are then
computed from (2.9), via the traditional approach.

In the QF approach, the face integrals on internal faces are evaluated as in the PQ approach, but some care
is required for the faces defining the SV. Here, (2.10) is integrated over each SV-bounding CV face, and the
resulting face integral can be expressed as the integral of a Riemann flux as follows:
Nodal sets in a triangular SV supporting quadratic, cubic and quartic data reconstructions for the flux vector, shown in (a), (b) and
pectively.



Fig. 4. Shape functions in a triangular SV supporting a cubic data reconstruction for the flux vector. The node which each function
corresponds to is shown in bold.
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Z
Ar

bF dA ¼ Ar

2
½F n;L þ F n;R � acðQR � QLÞ�; ð3:4Þ
where F n;L and F n;R denote the face-averaged normal component of the flux vector due to the SV to the left
and right of the interface, respectively, and ac is taken as either the maximum absolute eigenvalue as in the
Rusanov flux [23], or the dissipation matrix as in the Roe flux [22], which are evaluated at the face center.
QR and QL are the face-averaged conserved variables due to the SV to the right and left of the interface, respec-
tively. Eq. (3.4) can be deduced from the following analysis, which assumes a Rusanov flux. Since pi

(x,y,z) = Q(x,y,z) + O(hm+1), the following is also true,
QR � Q ¼ Oðhmþ1Þ;
QL � Q ¼ Oðhmþ1Þ;
QR � QL ¼ Oðhmþ1Þ;

ð3:5aÞ
and the maximum absolute eigenvalue can be expanded according to its value at the face center, i.e.,
a = ac + O(h). So we can say that
aðQR � QLÞ ¼ acðQR � QLÞ þ Oðhmþ2Þ: ð3:5bÞ



Fig. 5. Shape functions in a triangular SV supporting a quartic data reconstruction for the flux vector. The node which each function
corresponds to is shown in bold.
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Integrating (3.5b) over a face, we obtain
Z
Ar

aðQR � QLÞdA ¼ AracðQR � QLÞ þ OðArh
mþ2Þ: ð3:6Þ
At each node shown in Fig. 3, the flux is computed based on the reconstructed solution polynomial. Therefore,
the flux error at each node of the nodal set is of order O(hm+1), i.e.,
F n;L ¼ F n þ Oðhmþ1Þ;
F n;R ¼ F n þ Oðhmþ1Þ;
ðF n;L þ F n;RÞ=2 ¼ F n þ Oðhmþ1Þ;

ð3:7Þ
where Fn is the (unknown) ‘‘exact’’ normal flux at the face. Integrating the 3rd equation in (3.7) over a face, we
obtain
Z

Ar

1

2
ðF n;L þ F n;RÞdA ¼ 1

2
ArðF n;L þ F n;RÞ ¼ F nAr þ OðArh

mþ1Þ: ð3:8Þ
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So summarizing (3.6) and (3.8), we obtain
Table
Compa
integra

Order

3

4

Z
Ar

~F �~ndA � F nAr ¼
Ar

2
½F n;L þ F n;R � acðQR � QLÞ�r þ OðArh

mþ1Þ: ð3:9Þ
If ~F ¼ constant, the following identity exists:
XK

r¼1

Z
Ar

~F �~ndA ¼ 0: ð3:10Þ
Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the faces of Ci,j; i.e.,
XK

r¼1

Z
Ar

~F �~ndA ¼
XK

r¼1

Ar

2
½F n;L þ F n;R � acðQR � QLÞ�r þ OðArh

mþ2Þ: ð3:11Þ
Since O(Vi,j) = O(Arh), we have
dQi;j

dt
þ 1

V i;j

XK

r¼1

Ar

2
½F n;L þ F n;R � acðQR � QLÞ�r ¼ Oðhmþ1Þ: ð3:12Þ
Thus, if the surface integral in (2.8) is evaluated using (3.4), spatial accuracy of order m + 1 is assured.
To summarize, the first and second terms in (3.4) are computed as a weighted average of the flux evaluated

at the nodal set of the left, and right SV, respectively using (3.3), and the third and fourth terms are computed
as a weighted average of the cell-averaged conserved variables of the right and left SV, respectively, i.e.
Z

Ar

QdS ¼ Ar

XN

i¼1

LiQi; ð3:13Þ
where Li are the face-averaged CV-based shape functions for face r. Again, these are computed during prepro-
cessing for a standard element and then multiplied by the physical face area for computation.

In a quick comparison of the approaches, a 2D 3rd order SV method using the traditional ‘‘full quad-
rature’’ approach with 2 quadrature points per face necessitates 36 flux calculations per SV, the PQ
approach requires 28 flux calculations per SV, and the QF approach requires only 10 flux calculations
per SV. Similarly, for a 4th order SV method, the number of flux calculations per SV is 54, 39, and 15
for the ‘‘full quadrature’’, PQ, and QF approaches, respectively. So, the PQ and QF approaches are slightly
more efficient than the ‘‘full quadrature’’ approach in 2D, but are much less costly to evaluate in 3D where
the faces number in the hundreds. Table 1 summarizes the costs for the PQ and QF approaches in 2D and
in 3D. It is evident that the QF approach is slightly less expensive than the PQ approach in 2D in terms of
CPU time, as expected. Although the real savings presents itself in 3D, which can be seen from the required
flux calculations presented in Table 1.

4. Data limiting

For the non-linear Euler equations, it is necessary to perform data limiting to maintain stability if the solu-
tion contains discontinuities. There are many different ways of applying limiters in the system setting. In this
1
rison of costs for PQ and QF approaches for vortex propagation problem on 80 · 80 · 2 regular grid with single-stage time
tion and Rusanov flux

Approach CPU time (ls)/SV/iteration Number of flux calculations/SV/iteration

2D 2D 3D

PQ 31.63 28 200
QF 25.42 10 20

PQ 51.28 39 371
QF 46.92 15 35
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paper, we choose the primitive variable approach and enforce monotonicity using a TVD limiter. To this end,
we first establish the following numerical monotonicity criterion for each SV
�wmin
i 6 wiðxrn; yyn; zrnÞ 6 �wmax

i ; ð4:1Þ
where �wmin
i and �wmax

i are the minimum and maximum SV-averaged primitive variables {p,q,u,v,w} among all
the neighboring SVs sharing a face (called face neighbors), or sharing a node (called node-neighbors), with Si,
including the SV under consideration, and wi(xrn,yrn,zrn) are the reconstructed primitive variables at the nodal
set of the SV under consideration. The SV-averaged primitive variables are computed by
�wi;j ¼
XNS

k¼1

Mi;j;kwk ð4:2Þ
and
�wi ¼
1

V i

XN

j¼1

�wi;jV i;j; ð4:3Þ
where �wi;j are the CV-averaged primitive variables, Mi;j;k are the CV-averaged node-based shape functions, wk

are the primitive variables evaluated at node k, and Vi is the volume of SV i. The CV-averaged node-based
shape functions, Mi;j;k, are computed during preprocessing for a standard element.

In the cases considered here, only p and q are used in determining whether a given SV is to be limited to
guarantee the positivity of p and q. Additionally, �wmin

i and �wmax
i are scaled by (1 � �) and (1 + �), respectively,

where �� 1. This prevents unnecessary limiting based purely on numerical round-off. Here we use
10�5 < � < 10�3. Obviously if � is large, the limiter is no longer strictly TVD.

If (4.1) is violated for any node in the nodal set of the SV under consideration, then it is assumed that the
SV is close to a discontinuity, and all primitive variables in the SV are linear, i.e.,
rwi ¼ Const; 8r 2 Si: ð4:4Þ

The magnitude of this gradient is maximized subject to the monotonicity condition given in (4.1). The initial
guess of the gradient $wi for each SV is computed at the SV center using
rwiðx; y; zÞ ¼
XN

j¼1

rLi;jðx; y; zÞ�wi;j; ð4:5Þ
where $Li,j represent the gradients of the CV-based shape functions. The gradient $wi may not satisfy (4.1).
Therefore it is limited by multiplying by a scalar 0 6 u 6 1. The scalar is computed from
u ¼
min 1;

�wmax
i ��wi

wiðxrn;yrn;zrnÞ��wi

� �
if wiðxrn; yrn; zrnÞ > �wi;

min 1;
�wmin

i ��wi

wiðxrn;yrn;zrnÞ��wi

� �
if wiðxrn; yrn; zrnÞ < �wi;

1 otherwise:

8>>><
>>>: ð4:6Þ
5. Formulation for curved boundary representation

One of the biggest advantages of high-order methods over low-order methods is their ability to achieve bet-
ter solution accuracy using far fewer degrees-of-freedom when the solution is smooth. However, for problems
involving curved wall boundaries which are represented by line-segments or planar-facets, an inordinate
amount of elements may be necessary just to preserve the geometry with adequate precision. A much more
desirable approach is to represent curved boundaries with high-order polynomials that are compatible with
the order of the data reconstruction. Favorable results have been obtained [34] when applying this technique
to the SV method. One drawback of this approach is that it necessitates computation and storage of a separate
reconstruction for each and every wall-bounding cell. For large problems, and especially in 3D, the memory
requirement can become large. Here we follow an approach by Krivodonova and Berger [19] originally devel-
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oped for the DG method, in which the geometry is represented with high-fidelity, but a separate reconstruction
for every wall-bounding cell is avoided.The basic idea employed here is that straight-sided SVs, rather than
curved SVs, are employed at wall boundaries, but a no-flow boundary condition is enforced for the physical
boundary as opposed to the computational (polygonal or polyhedral) boundary. This allows us to utilize the
same reconstruction for the SVs on curved boundaries that is already in use for all other SVs.

This procedure involves a number of steps. First, a set of points is defined for each SV face to construct a
polynomial representation of that face. Here we employ a cubic polynomial for this case. Thus, 4 points are
needed to define a cubic polynomial for each SV face in 2D. Two of the points are taken as the SV face end-
points, while the 3rd and 4th points are computed from a cubic polynomial fit between the SV face endpoints
and the opposite endpoints of both neighboring SV faces. If the SV face in question is at the end of the curved
wall, or at a sharp trailing edge, then a 2-point extrapolation is used to replace the missing opposite endpoint
of the adjacent SV face with a fictitious point. The 3rd and 4th points are then computed as in the above. Now
that we have a cubic polynomial defined for each SV face on a curved boundary, the normal can be computed
at any point on the curved face. To determine the points at which the normal vectors must be computed,
points in the standard SV can be mapped into a simplified cubic SV (SCSV), as shown in Fig. 6, via the
following
r ¼
X5

j¼1

Cjðn; gÞrj; ð5:1Þ
where
C1ðn; gÞ ¼ 1� 5:5n� gþ 9nðnþ gÞ � 4:5nðnþ gÞ2;
C2ðn; gÞ ¼ n½1� 4:5ðnþ gÞ þ 4:5ðnþ gÞ2�;
C3ðn; gÞ ¼ g;

C4ðn; gÞ ¼ 9n½1� 2:5ðnþ gÞ þ 1:5ðnþ gÞ2�;
C5ðn; gÞ ¼ n½�4:5þ 18ðnþ gÞ � 13:5ðnþ gÞ2�;

ð5:2Þ
and obviously for points on the curved wall, g = 0. The unit-normal vector at any point on the curved face is
then computed by
~n ¼
dy
dn ;� dx

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy
dn

� �2

þ dx
dn

� �2
r : ð5:3Þ
It is important to note that the vector ~n is used only to define a ghost state at quadrature points, or nodes,
located on curved-wall boundaries. The numerical flux is still computed through the straight-sided boundary.
Thus, for the PQ approach, ~n must be computed and stored for each quadrature point on every curved-wall
bounding SV. Whereas, in the QF approach,~n must be computed and stored for each node in the nodal set of
wall-bounding SVs that lies on the wall-bounding face. Additionally, ~n must be computed and stored at the
Fig. 6. Simplified cubic SV (SCSV) with one curved boundary.
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CV face centers for curved-wall bounding SVs, to be used for computing the eigenvalue or dissipation matrix.
Note that for simple geometries such as a cylinder, the above process is unnecessary as the normals can be
computed directly.

6. Numerical tests

In this section, the efficient SV implementation is evaluated for 2D scalar advection equations, and for the
2D Euler equations. Both 3rd order and 4th order partitions are evaluated. The 3rd order partition, and the
corresponding nodal set to support a cubic reconstruction for the flux vector are shown in Fig. 1b, and Fig. 3a,
respectively. The 4th order partition, and the corresponding nodal set to support a quartic reconstruction for
the flux vector are shown in Fig. 1c, and Fig. 3b, respectively. The numerical error is assessed using both reg-
ular and irregular grids, as shown in Fig. 7. The finer grids are generated recursively by cutting each courser
grid cell into four finer grid cells. The 3rd order SSP Runge–Kutta scheme is used for time integration in all
cases. Also, all errors presented are time-step independent because the time step Dt was made small enough so
that the errors are dominated by the spatial discretization. The initial CV-averaged solutions were computed
using the CV-averaged node-based shape functions. In this way, the solution is initialized at the nodal set, and
the CV-averaged solutions are computed as a weighted average of these nodal values. This avoids the need for
a high-order Gauss quadrature initialization. The solution is taken as converged when the L2 norm of the
residual is reduced by eight orders of magnitude in all cases. The L2 norm of the density residual is used
for the Euler equation simulations.

6.1. Accuracy study with linear advection equation

In this case, we test the accuracy of the SV method on the 2D linear advection equation:
oQ
ot
þ oQ

ox
þ oQ

oy
¼ 0; �1 6 x 6 1; �1 6 y 6 1;

Qðx; y; 0Þ ¼ sin pðxþ yÞ; periodic boundary condition:

ð6:1Þ
The numerical solutions were carried out until t = 1 s for this time-accurate problem. In Tables 2 and 3, we
present the L1 and L1 errors and orders for regular and irregular grids, respectively. Grid refinement is carried
out until both the L1 and L1 orders are sufficiently demonstrated. For this case, the PQ results are identical to
the QF results, as expected for a linear equation, so just the QF results are presented. The formal order of
accuracy is observed, using both regular and irregular grids.
Fig. 7. Regular and irregular grids for validation cases: (a) regular (10 · 10 · 2) and (b) irregular (10 · 10 · 2).



Table 2
Accuracy of 2D linear advection equation at t = 1 s on regular grids

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 1.33e�3 – 3.29e�3 –
20 · 20 · 2 1.73e�4 2.94 4.47e�4 2.88
40 · 40 · 2 2.19e�5 2.98 5.77e�5 2.95
80 · 80 · 2 2.76e�6 2.99 7.29e�6 2.98

4 10 · 10 · 2 7.10e�5 – 2.44e�4 –
20 · 20 · 2 4.38e�6 4.02 1.56e�5 3.97
40 · 40 · 2 2.73e�7 4.00 9.78e�7 3.99
80 · 80 · 2 1.71e�8 4.00 6.12e�8 4.00

Table 3
Accuracy of 2D linear advection equation at t = 1 s, on irregular grids

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 3.12e�3 – 1.57e�2 –
20 · 20 · 2 4.09e�4 2.93 1.93e�3 3.02
40 · 40 · 2 5.36e�5 2.93 3.37e�4 2.52
80 · 80 · 2 6.99e�6 2.94 6.18e�5 2.45

4 10 · 10 · 2 2.62e�4 – 1.50e�3 –
20 · 20 · 2 1.56e�5 4.07 1.13e�4 3.73
40 · 40 · 2 9.67e�7 4.02 8.23e�6 3.77
80 · 80 · 2 6.03e�8 4.00 5.38e�7 3.94
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6.2. Accuracy study with Burgers equation

In this case, we test the accuracy of the SV method on the 2D Burgers equation:
Table
Accura

Order

3

4

oQ
ot
þ oQ2=2

ox
þ oQ2=2

oy
¼ 0; �1 6 x 6 1; �1 6 y 6 1;

Qðx; y; 0Þ ¼ 1

4
þ 1

2
sin pðxþ yÞ; periodic boundary condition:

ð6:2Þ
The numerical solutions were carried out until t = 0.1 s for this time-accurate problem. At this time the solu-
tion is still smooth, so data limiting is not necessary. In Tables 4 and 5, we present the L1 and L1 errors and
orders for regular and irregular grids, respectively. Grid refinement is carried out until both the L1 and L1
orders are sufficiently demonstrated. Results from the PQ and QF approaches are not identical for this case,
but they are very similar, so again only the QF results are shown. The formal order of accuracy is again ob-
served, using both regular and irregular grids.
4
cy of 2D Burgers equation at t = 0.1 s on regular grids

of accuracy Grid L1 error L1 order L1 error L1 order

10 · 10 · 2 3.96e�4 – 1.63e�3 –
20 · 20 · 2 6.49e�5 2.61 3.97e�4 2.03
40 · 40 · 2 1.03e�5 2.66 7.01e�5 2.50
80 · 80 · 2 1.55e�6 2.73 1.12e�5 2.65

10 · 10 · 2 3.28e�5 – 3.77e�4 –
20 · 20 · 2 2.39e�6 3.78 3.26e�5 3.53
40 · 40 · 2 1.74e�7 3.77 2.89e�6 3.49
80 · 80 · 2 1.23e�8 3.83 2.08e�7 3.80



Table 5
Accuracy of 2D Burgers equation at t = 0.1 s on irregular grids

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 6.42e�4 – 3.35e�3 –
20 · 20 · 2 1.17e�4 2.45 9.96e�4 1.75
40 · 40 · 2 1.88e�5 2.65 2.66e�4 1.90
80 · 80 · 2 2.91e�6 2.69 6.12e�5 2.12
160 · 160 · 2 4.41e�7 2.72 1.14e�5 2.43
320 · 320 · 2 6.51e�8 2.76 1.88e�6 2.59

4 10 · 10 · 2 8.35e�5 – 1.16e�3 –
20 · 20 · 2 6.20e�6 3.75 1.43e�4 3.02
40 · 40 · 2 4.57e�7 3.76 1.26e�5 3.51
80 · 80 · 2 3.28e�8 3.80 1.06e�6 3.56
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6.3. Accuracy study with vortex propagation problem

The unsteady 2D Euler equations in conservative form can be written as
oQ
ot
þ oF

ox
þ oG

oy
¼ 0; ð6:3Þ
where Q is the vector of conserved variables, F and G are the inviscid flux vectors given below:
Q ¼

q

qu

qv

E

8>>><
>>>:

9>>>=
>>>;; F ¼

qu

qu2 þ p

quv

uðE þ pÞ

8>>><
>>>:

9>>>=
>>>;; G ¼

qv

quv

qv2 þ p

vðE þ pÞ

8>>><
>>>:

9>>>=
>>>;: ð6:4Þ
Here q is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the
total energy. The pressure is related to the total energy by
E ¼ p
c� 1

þ 1

2
qðu2 þ v2Þ; ð6:5Þ
with ratio of specific heats c. In all of the simulations in this paper, c is taken to be 1.4. This is an idealized
problem for the Euler equations in 2D. the mean flow is {q,u,v,p} = {1,1,1,1}. An isotropic vortex is then
added to the mean flow, i.e. with perturbations in u, v, and temperature T = p/q, and no perturbation in en-
tropy S = p/qc:
ðdu; dvÞ ¼ e
2p

e0:5ð1�r2Þð��y;�xÞ;

dT ¼ �ðc� 1Þe2

8cp2
e1�r2

;

dS ¼ 0;
where r2 ¼ �x2 þ �y2, �x ¼ x� 5, �y ¼ y � 5, and the vortex strength e = 5. If the computational domain extends to
infinity, the exact solution of the Euler equations with the above initial conditions is just the passive convec-
tion of the isotropic vortex with mean velocity (1,1). In the following accuracy study, the computational do-
main is taken to be [0, 10] · [0, 10], with characteristic inflow and outflow boundary conditions imposed on the
boundaries. The numerical solution is carried out until t = 2 on both regular and irregular grids. No limiters
are employed in this study since the problem is smooth, and the Rusanov flux is used in all simulations. In
Tables 6 and 7, we present the L1 and L1 errors and orders in the CV-averaged density for the regular grids
using the PQ and QF approaches, respectively. Tables 8 and 9 show the L1 and L1 errors and orders for the
irregular grids using the PQ and QF approaches, respectively. Comparison of the PQ and QF approaches for
this case show very similar behavior. The formal order of accuracy is demonstrated for all cases.



Table 6
Accuracy of 2D vortex propagation problem at t = 2 s on regular grids using PQ approach

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 1.41e�03 – 4.09e�02 –
20 · 20 · 2 2.51e�04 2.49 4.88e�03 3.06
40 · 40 · 2 4.30e�05 2.54 1.05e�03 2.22
80 · 80 · 2 6.88e�06 2.65 1.95e�04 2.42
160 · 160 · 2 1.05e�06 2.71 3.16e�05 2.63

4 10 · 10 · 2 6.08e�04 – 9.98e�03 –
20 · 20 · 2 4.95e�05 3.62 1.12e�03 3.16
40 · 40 · 2 3.03e�06 4.03 1.14e�04 3.30
80 · 80 · 2 1.92e�07 3.98 7.28e�06 3.96
160 · 160 · 2 1.36e�08 3.82 6.22e�07 3.55

Table 7
Accuracy of 2D vortex propagation problem at t = 2 s on regular grids using QF approach

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 1.44e�03 – 5.00e�02 –
20 · 20 · 2 2.53e�04 2.51 5.05e�03 3.31
40 · 40 · 2 4.32e�05 2.55 1.07e�03 2.24
80 · 80 · 2 6.89e�06 2.65 1.98e�04 2.44
160 · 160 · 2 1.05e�06 2.71 3.17e�05 2.64

4 10 · 10 · 2 5.49e�04 – 9.16e�03 –
20 · 20 · 2 4.82e�05 3.51 8.90e�04 3.36
40 · 40 · 2 3.04e�06 3.99 1.07e�04 3.06
80 · 80 · 2 1.92e�07 3.99 6.97e�06 3.94
160 · 160 · 2 1.36e�08 3.82 6.12e�07 3.51

Table 8
Accuracy of 2D vortex propagation problem at t = 2 s on irregular grids using PQ approach

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 1.11e�03 – 2.67e�02 –
20 · 20 · 2 1.85e�04 2.58 3.23e�03 3.04
40 · 40 · 2 3.00e�05 2.63 6.91e�04 2.23
80 · 80 · 2 4.76e�06 2.66 1.32e�04 2.39
160 · 160 · 2 7.36e�07 2.69 1.95e�05 2.75

4 10 · 10 · 2 3.46e�04 – 8.38e�03 –
20 · 20 · 2 3.07e�05 3.49 4.52e�04 4.21
40 · 40 · 2 2.07e�06 3.89 4.87e�05 3.21
80 · 80 · 2 1.42e�07 3.87 3.89e�06 3.65
160 · 160 · 2 9.49e�09 3.90 3.66e�07 3.41
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6.4. Zalesak’s disk rotation problem

The rigid body rotation of Zalesak’s disk (notched circle in 2D) under a constant vorticity velocity field [38]
is employed to demonstrate the ability of the limiter to preserve discontinuities. The computational domain is
taken to be [0,1] · [0,1], and the notched circle centers at (0.5,0.75) with radius 0.15 and the slot has a width of
0.05 and length of 0.2479. The velocity is given by
u ¼ 0:5� y;

v ¼ x� 0:5:
ð6:6Þ
The conserved variable is initialized to +1 inside the notched circle, and �1 everywhere else. The numerical
solution is carried out until t = 2p, which constitutes one full revolution of the disk. Fig. 8 shows results



Table 9
Accuracy of 2D vortex propagation problem at t = 2 s on irregular grids using QF approach

Order of accuracy Grid L1 error L1 order L1 error L1 order

3 10 · 10 · 2 1.11e�03 – 3.21e�02 –
20 · 20 · 2 1.87e�04 2.57 3.36e�03 3.26
40 · 40 · 2 3.01e�05 2.63 7.15e�04 2.23
80 · 80 · 2 4.76e�06 2.66 1.33e�04 2.43
160 · 160 · 2 7.36e�07 2.69 1.96e�05 2.76

4 10 · 10 · 2 3.44e�04 – 6.75e�03 –
20 · 20 · 2 2.96e�05 3.54 4.42e�04 3.93
40 · 40 · 2 2.05e�06 3.85 4.60e�05 3.26
80 · 80 · 2 1.41e�07 3.86 3.75e�06 3.61
160 · 160 · 2 9.49e�09 3.90 3.58e�07 3.39
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for 2nd and 3rd order QF schemes on regular 80 · 80 · 2 and 160 · 160 · 2 grids. It is evident that both the
2nd and 3rd order schemes capture the sharp features of the disk reasonably well. The 3rd order SV scheme
obviously captures the discontinuity with higher resolution than the 2nd order one, as expected.

6.5. Mach 3 wind tunnel with a step

This problem was studied extensively by Woodward and Colella [36], and has been widely used to assess the
performance of shock-capturing methods. The 2D wind tunnel is 3 units long and 1 unit wide, with a step of
0.2 units high located at 0.6 units from the tunnel inlet. The initial condition is a Mach 3 right-going uniform
flow. Inviscid wall boundary conditions (reflective) are used for tunnel wall boundaries, while inflow and out-
flow boundary conditions are used at the inlet and exit of the wind tunnel. It is well known that the corner of
the step is a singularity, and often leads to a spurious Mach stem at the downstream bottom wall, and an erro-
neous entropy layer at the bottom wall. In [36], various numerical treatments were used to remedy these arti-
facts. In the present study, no special treatments were used for the singularity to see how the singularity affects
the numerical solutions.

It was shown in [33] that the 4th order partition in Fig. 1c produces large errors for this case, due likely to
the non-uniform sub-cell mesh, so this study will focus on the 2nd and 3rd order partitions shown in Fig. 1a
and b, respectively. Two different grids are considered here, consisting of 8746 and 37,146 triangles, the coars-
est of which is shown in Fig. 9. Thus, the number of degrees-of-freedom for the 2nd order case is 26,238 and
111,438, respectively, and the number of degrees-of-freedom for the 3rd order case is 52,476 and 222,876,
respectively. All simulations are carried out until t = 4. The results obtained using the QF approach with
Rusanov flux are nearly identical to those obtained using the PQ approach, so only the QF results with Rusa-
nov flux are shown here. The node-neighbor stencil is used for all cases here, as the face-neighbor stencil
caused too many cells to be limited, essentially reducing the schemes to low order.

The computed density contours for the 2nd and 3rd order simulations on all grids are shown in Figs. 10 and
11, respectively. Obviously, the resolution of the 3rd order results is better than that of the 2nd order results
while the 3rd order results are more oscillatory than the 2nd order results. This behavior is consistent with the
results found in [33]. For example, the spurious Mach stems in the 3rd order results are considerably weaker
than those in the 2nd order results. Also, the instability generated by the slip line begins to become visible in
the 3rd order results on the fine mesh. It should be noted that the resolution of the results in [33] is slightly
better than those presented here due to the presence of sub-cell resolution in the limiter. Nevertheless, the
results presented here show similar trends for the density contours, and the strength of the spurious Mach
stem is dramatically reduced under h-refinement.

6.6. Subsonic flow over a circular cylinder

A subsonic inviscid flow around a circular cylinder at Mach = 0.3 is selected to test the curved boundary
representation. Due to flow symmetry, only the top half of the physical domain is selected as the computa-



Fig. 8. Zero contour for Zalesak’s disk rotation problem. (a) 2nd order and (b) 3rd order.
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tional domain although the complete physical domain is displayed in all of the figures. The far field bound-
ary is located 20 diameters away from the cylinder center and the characteristic inflow/outflow boundary
conditions are used at the far field boundary. In order to perform a grid refinement accuracy study, three
different triangular grids were generated from three structured grids with 32 · 8, 64 · 16 and 128 · 32 cells,
which are shown in Fig. 12. The solution is initialized to a uniform free stream. All simulations employ the
simplified curved boundary treatment given in Section 6. The simulations were also run using a piece-wise
linear boundary representation, but the solution quickly diverged in all cases. Also, even with the curved



Fig. 10. Density contours for the 2nd order scheme. Thirty even contour lines between 0.09 and 4.53; (a) 26,238 DOFs and (b)
111,438 DOFs.

Fig. 9. A coarse mesh for the supersonic wind tunnel problem with 8746 triangles.
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boundary treatment, the use of the Rusanov flux in the QF approach can lead to instabilities due to spurious
entropy production at the trailing edge. This is overcome by the use of either the Roe [22], or HLLC
[15,26,27,5] flux.

Figs. 13 and 15 show results for the PQ approach and the HLLC flux for both 3rd and 4th order simula-
tions, respectively, and Figs. 14 and 16 show results for the QF approach and the Roe flux for both 3rd and
4th order simulations, respectively. All plots show fourteen even contours of Mach number between 0 and
0.65. The coarse grids show some discontinuous contours and a slight asymmetry at the trailing edge. As
the grid is refined, the contours become continuous and the flow becomes perfectly symmetric with respect
to both axes. For the 3rd order case, grid independence is achieved on the medium grid, while for the 4th order



Fig. 11. Density contours for the 3rd order scheme. Thirty even contour lines between 0.09 and 4.53; (a) 52,476 DOFs and (b)
222,876 DOFs.

Fig. 12. Computational grids for flow over a circular cylinder; (a) 32 · 8 · 2 cells; (b) 64 · 16 · 2 cells and (c) 128 · 32 · 2 cells.
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case, even the coarse grid results are nearly grid independent. It is interesting to note that these results appear
to be slightly better than those obtained using the full isoparametric SV approach on the same grids [34].

6.7. Subsonic flow over a NACA 0012 airfoil

As a final demonstration for a more realistic geometry, subsonic flow around a NACA 0012 airfoil at
Mach = 0.4, and angle of attack of 5� is simulated. In this simulation, the 3rd and 4th order schemes are tested



Fig. 13. Mach contours computed with 3rd order PQ approach and HLLC flux. (a) 3072 DOFs; (b) 12,288 DOFs and (c) 49,152 DOFs.

Fig. 15. Mach contours computed with 4th order PQ approach and HLLC flux. (a) 5120 DOFs; (b) 20,480 DOFs and (c) 81,920 DOFs.

Fig. 14. Mach contours computed with 3rd order QF approach and Roe flux. (a) 3072 DOFs, (b) 12,288 DOFs and (c) 49,152 DOFs.
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using a very course mesh with 48 · 16 · 2 triangles, as shown in Fig. 17, to further demonstrate the effective-
ness of the curved boundary treatment. The outer boundary is 20 chords away from the center of the airfoil.
Thirty-three even pressure contours between 0.5 and 0.8 computed using both a linear and quadratic bound-



Fig. 16. Mach contours computed with 4th order QF approach and Roe flux. (a) 5120 DOFs; (b) 20,480 DOFs and (c) 81,920 DOFs.

Fig. 17. Computational grid for flow over a NACA 0012 airfoil (48 · 16 · 2 triangles).

Fig. 18. Pressure contours for QF approach and Roe flux: (a) 3rd order and (b) 4th order.
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Fig. 19. Mach contours for QF approach and Roe flux: (a) 3rd order and (b) 4th order.
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ary representation are shown in Fig. 18a and b, respectively. Fig. 19a and b show 33 even contours of Mach
number between 0 and 0.8. All results are for the QF approach and Roe flux. As can be seen in Fig. 18, the
pressure contours become very smooth and continuous under p-refinement. Some spurious entropy produc-
tion has caused a slight irregularity in the Mach contours at the airfoil surface, which can most likely be attrib-
uted to the extreme coarseness of the grid.

7. Conclusions

An efficient implementation of the spectral volume method has been successfully carried out for the 2D sca-
lar and Euler equations. Two different approaches to compute the flux integrals more efficiently, the partial
quadrature (PQ) and quadrature-free (QF) approaches, have been developed and evaluated for both 3rd
and 4th order SV schemes. For a 3rd order SV scheme, the PQ and QF approaches require 22% and 72% fewer
flux calculations than the traditional approach, respectively, and for a 4th order SV scheme, the PQ and QF
approaches require 28% and 72% fewer flux calculations than the traditional approach, respectively. The sav-
ings is obviously significant in 2D, but it does not end here. In 3D, the hundreds or thousands of flux calcu-
lations per SV required in the traditional approach will literally be reduced to only dozens. For all approaches,
it has been found that the nearly optimum order of accuracy can be obtained in both the L1 and L1 norms
with respect to density errors. A total variation diminishing (TVD) limiter has been implemented in both the
PQ and QF framework, and demonstrated for an unsteady supersonic problem with strong shocks. A simpli-
fied curved boundary treatment, which significantly reduces complexity of the numerical implementation, has
been developed for both the PQ and QF framework and employed with success. The 3rd and 4th order
schemes using the QF approach and Roe flux have been implemented for the case of subsonic flow around
a NACA 0012 airfoil to further demonstrate the effectiveness of the simplified high-order boundary treatment.
The linear boundary representation was also used with 3rd and 4th order SV schemes for the case of subsonic
flow over a cylinder, but we were only able to obtain convergent numerical solutions using the high-order
boundary treatment for this case. The extension of the QF approach to the 3D scalar and Euler equations
is now under way, and will be reported in a future publication.
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